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Abstract. The hydrodynamic equations for a n m w  slab when the state of 3He-A is deformed 
slightly by a magnetic field are solved. Then the torque exerted an the torsional oscillator in 
which the slab is contained is calculared, and the changes in the resonant frequency as a function 
of the magnetic field are determined. 

1. Introduction 

The unusual intrinsic anisotropy of supemuid 'He-A is characterized by two unit vectors 
i, associated with the orbital angular momentum, and 2, associated with the spin angular 
momentnm of the triplet pwave Cooper pairs. The magnetic deformation of the textures 
in a narrow slab has been considered by Fetter [l], who obtained the phase diagram for 
superfluid 3He-A confined in a nmow slab, subject to a perpendicular magnetic field, by 
minimizing the total free energy y d  using the variational approach. 

For a magnetic field H = HZ perpendicular to the face of the slab which is smaller 
than HD, the dipole magnetic field, i.e. h = H/HD << 1, the dipole locking aligns 2 parallel 
to ill2, B = @ = 0 whereas, for h > 1, the magnetic force aligns 2 perpendicular to i, 
B = 0 and @ = n/Z. In both these regimes the resulting texture is uniform across the 
slab. For intermediate fields, however, the texture undergoes a transition to a deformed 
state, analogous to the Freedericksz transition observed in nematic liquid crystals [1,2]. 
The boundary curve characterizing the onset of deformation has been calculated exactly [3]. 
There are two critical fields: h,, for the onset of deformation and h,, a second critical 
field below which the texture is non-uniform, i.e. for h,, c h c h, we have a deformed 
state. 

The textures in the slab has also been considered by Hook and co-workers [4]; 
they obtained an exact numerical solution of the Euler equations for B(Z) and @(Z). 
Extrapolating the exact numerical solutions of B and 4 for a very thin slab indicates that 
the agreement between these two approaches are good. 

The instability of the uniform orbital texture of a slab of 3He-A in a perpendicular 
magnetic field has been observed by Hook and co-workers [2,4]. The slab width d in 
their experiments was 105 Mm which is greater than the critical width d, of the slab. The 
upper curve for h, tends to infinity at this critical width. For observation of both threshold 
magnetic fields h,, and h, in the textural phase diagram of superfluid 'HeA confined in a 
slab, one hence needs to use a thin slab in which the width is smaller than 4. 

In this paper we consider that part of the textural phase diagram in which d c dc, 
and the uniform orbital texture deforms slightly. First we write briefly the Euler equations 
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for e(2 )  and @(Z) and their variational solutions. We next calculate the hydrodynamic 
equations and obtain the components of the normal and superfluid velocities. Finally we 
compute the torque exerted on the slab and give some concluding remarks. 

2. Variational solution for a narrow slab 

Consider a slab of 3He-A inside a torsional oscillator of width d, placed in a perpendicular 
magnetic field H. We shall assume that the orbital texture is not affected by the flow 
associated with the motion of the torsional oscillator. This can be arranged in an experiment 
by keeping the amplitude of oscillation sufficiently small [4]. Furfhermore, we assume that 
the uniform texture which is deformed by a perpendicular magnetic field is a planar texture, 
which is the case at small oscillation amplitudes. Therefore, in the present slab geometry, 
the vectors i and 2 are coplanar, and in the 2-y plane, specified by the pair of angular 
variables B and 4, i . 5 = cos 0 and 2 .  5 = cos @. The equilibrium orientation of the i 
and 2 vectors is determined by minimizing the free energy associated with the free-energy 
density 151: 

f is dimensionless, measured in units of pSpllL& Here, the various bending coefficients 
are dimensionless dipole-unlocked values, measured in units of pspn. The first two terms 
in equation (1) are the bending energies, the third is the dipole contribution, and the last is 
the magnetic term. LD = (psp l l /h~) l ’ z  is the dipoleunlocking length (about lOpm). The 
problem is to minimize the total free energy (f) = J dzf, subject to the usual hydrodynamic 
boundary conditions. 

As we mentioned previously, the variational approach 111 for minimizing equation (1) 
for the case we are considering is in agreement with exact numerical calculation [4]. From 
the symmetry considerations of B (z)  about the centre of the slab and the boundary conditions 
on S(z )  and @(z)  it is convenient to use a sinusoidal form for 

and 

4 ( z )  = 4 (3) 

where As and 4 are determined variationally. This calculation has already been done by 
Fetter [I] and we quote his results: 

(f) = @’A:/8Dz)(Kb + K, 4- (Kb - K,)[Jo(ZAs) + Jz(2Ae)l] 4- $(h’ + 1 )  

-[k(h’ - Jo(2As))’ + a-2F2(As)]1” (4) 

where F ( A )  = CF=o(2K + l ) - ’ J i ~ + 1 ( 2 A ~ ) ,  J, denotes the usual Bessel functions and 
D = d j L D .  Equation (4)  should be minimized with respect to the amplitude AB for a fixed 
value of applied magnetic field h. By using the values of HD, LD, K, and Kb from table 1 
of [I] we obtain the numerical values of As at different magnetic fields for a slab of width 
25 pn. A i  is plotted versus h in figure 1 for two different values of reduced temperature. 
As is seen from the figure the maximum value of As decreases with decreasing temperature. 
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3. The hydrodynamic equations of a narrow slab of 

We now proceed to solve the hydrodynamic equations of a narrow slab of 3He-A in a 
torsional oscillator with small oscillation amplitudes for obtaining the superfluid and normal 
fluid velocities VT and V". We assume that the total density of the'fluid remains constant 
during the oscillator motion. Then the conservation of mass requires that 

in torsional oscillator 

where the current density is [6] 

g = p" . V" + p" V" + c. v xi. (6) 
The components of the tensor C are written as Cij = C&j + Col; . l j .  For the configuration 
that we are considering, one can easily show that the contribution of the third term on the 
right-hand side of equation (6) to the equation (5) is zero. Equations.(5) and (6), hence, 
give 

(7) 

The equations of motion of g and Vs linearized to first order in the velocities can be written 
as 

(8) 

* *  

v . (p" . V" + p" . V") = 0. 

agj - + v,n;j + V j P  = 0~ at  

(9) 
a v  - + V(p + hV * (g - PV")) = 0 at 

where we have ignored many dissipative and reactive coefficients [7] in writing the equations 
in this form, Microscopic calculations suggest [8] that forces resulting~ from these are 

and 



6836 M A  Shahzamanian 

negligible in comparison with those from the stress tensor njj. {3 is the second viscosity 
term and /.L is the chemical potential. The stress tensor can be written as 

(10) n.. I ,  - - ,n(V, * v;" + vi ' - ;cv. V") 
where the shear viscosity coefficients ~ j j n r  may be written as [9] 

i ~ i j t r  = A(Sidji + W j d  + B(6idjli + SjdiC + % d j 4  + SjrZiZd 
+C&jS, + Dliljlkli + E(Sijl& + &[lilj). (11) 

Alternative choices of the five coefficients are also defined by Wolfle [lo] and Hook and 
co-workers [4]. 

Following the argument of Hook and co-workers [4] about the smallness of the fountain 
effect term SVT, which was not included in equation (9) we may relate the pressure and 
chemical potential as 

V P  = p v p .  (12) 
Equation (12) allows us to eliminate P and p from the problem and to replace equations (8) 
and (9) by 

(13) 
a 
at  
-@j - C V )  + Vil-Iji + PZt3Vj(V. v.) = 0 

The coefficient c3 diverges at Tc and effects due to this term might be visible near 7''-a 
region that we do not consider in thii paper. The third term in (13), hence, is negligible in 
comparison with those from the shear viscosity tensor nj;. 

Another useful relation which connects the different components of the superRuid 
velocity to each other is the Mermin-Ho [ 111 relation 

- 
(14) 

h -  vj . y - vi .VI = -1 .COj . 1  x vi . l ) .  
' 2 m  

For the case under consideration the term on the right-hand side of equation (14) is zero. 
The aim of our calculation is to compute the torque exerted by the fluid on the oscillator, and 
we, therefore, need to solve equations (7). (13) and (14) with suitable boundary conditions. 
To solve the hydrodynamics of the planar texture, we assume velocity fields of the form 

V" = (v"(y,z)3i:+ v,"(x,z)Q+ v~(x,z)@exp(iwt) (15) 

(16) 
where we use Cartesian coordinates and o is the frequency of oscillation of the slab. By 
using equations (lo), (ll), (15) and (16) in (13) we obtain the following equations for the 
planar texture: 

and 

V s  = (Vi(z, y ) i  + Vy"(x, z)Q + V:(x, z)i)exp(iot) 

a2 vy" a2v; 
azax azay iw(piV," + p;fV: - pV:) + Esin(20)- + B sin(20)- 
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(18) 
D .  
2 

E sin(20) + - sln(28) cos' f3 + 

(19) 
a avn 
az az 

+2-(2A + 4B c0s20 + C + Dcos48 + 2E cos2@)- = 0 

and equation (7) becomes 
(pi -p:)sin~cosev;+[p; + ( p i  - p ; ) c o s 2 e l v ; + ( p ;  -p;)sin8cosev," 

+[p; + (p; - p;) COS*~]V: = 0. (20) 
As we mentioned previously, we are considering the state of 3He-A in a torsional 

oscillator which is deformed slightly.  on the basis of this assumption and the symmetry 
of the problem it is possible to use the following approximations for the velocity field 
components: 

V:(Y, Z )  2: Y ~ ( z )  + Aea;(z) + A;ya;(z) 
Vy"(x, z )  N xbG(z) + Asnb;(z) + A;xb;(z) 

V:(X, y) 2: xC,"(Z) + ABxC;(Z) + A;xC;(z) 
V:(Z) ? d(z) + Asa;(z) + ~ A & ~ ( z )  +  AH^ 
V;(X,Z)  ? x C ~ ( Z )  +AexCI(z) + A;xCi(z) 
V,"(X,Z) N AHX.  (21) 

Since we are considering the planar texture which is deformed slightly from the uniform 
texture, we may use the following boundary conditions [4]: V" = io$, gz = 0 at z = &d/2 
and Sf$g.iIz = 0. In obtaining the last equation in (21) we used equation (14) and the 
boundary conditions (see appendix). 

By substituting equations (21) into equations, (17H20) and ignoring terms which are 
proportional to Ai  or higher order we get the following equation for each component of the 
velocities (see appendix): 

where i stands for the x, y and z components of the velocities and j for 0, 1 and 2 (the 
zeroth, first and second orders of the velocity components). The inhomogeneous second- 
order differential equation (22) has been solved by the method of variations in constants 
[12]. Since these solutions are straightforward and lengthy we write only the results in the 
following (see appendix): 
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cos( Kyd /2 )  sin( K x z )  x sin K +- z -  [ ‘ ( :) sin(K,d/2) 
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2i K 2  E -- 
2(2B + D + E )  - S2' 

- imp; 

The right-hand side of equations (38)-(41) have been defined on the basis of the fact that 
A + E ,  C + D + E ,  2 A  +4B +C + D +2E and 2B + D + E  are positive quantities. This 
is the case for temperatures smaller than O.85Tc [3,9,13]. 

4. Calculation of the torque exerted on the slab 

The torque exerted by the fluid on the oscillator is defined by 

Furthermore we define Arz rz(0)-rz(O), which is the variation in the exerted torque due 
to the appearance of the texture. In the uniform texture, hence Arz = 0. Straightforward 
calculations give 

2cos(Kzd/2) 2sin(KZd/2) sin(K d 2 K," 
Kz + r /d  + cos(Kyd/2)Ky '1 pI(KyZ - (K, +x/dY) +P! ( 
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2(2B +D+E)sin(Kyd/2)K,(K, +n/d) 
cos(KZd/2)io(K: - (Ky + n/d)z) 

(43) - 
K" 

where a is the radius of the oscillating slab. We write Arz  in terms of the dimensionless 
quantities AF, and AFz as 

Arz  = np;,a dw 4d(AFj +iAF2) (44) 
where Fj and Fz are related to the inertial and dissipative effects, respectively. Here we 
calculate AFT and AFz for the case in which K,d, Kyd,  K,d and Kd are much smaller 
than one; hence 

where K, stands for K,, K,, K,  and K. As is obvious, AFz = 0 for this case. 

5. Concluding remarks 

The hydrodynamic equations for a n m w  slab when the state of 3He-A is deformed slightly 
by a pependicular magnetic field are solved for planar textures. The components of the 
normal and superfluid velocity are obtained in equations (23x37). Arz  or the values 
of AFI and AFz are proportional to A i  which are plotted versus h in figure 1. AFj is 
proportional to the change in the resonant frequency and AF2 to its width. As we have 
mentioned previously, our calculations are exact for low temperatures f = TIT, < 0.8 and 
d < d,. For the special case in which K,d, K,d, K,d and Kd are much smaller than one, 
AF2 = 0 and AFl is given by 
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One may obtain the values of some of the components of p' and p" by comparing 
equation (46) with the experimental results. We mention that the dependence of A) on 
the parameters HD, HD, Ks and Ks can be determined theoretically, since the texture is 
insensitive to these values [4]. 
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Appendix A. Calculation of the components of the velocities 

In this appendix we derive briefly the velocity components which are written in 
equations (23)-(37). By substituting equation (20) into equation (19) we have 

(AI) +2-(2A+4Bcos20+C+ a Dcos4~+2Ecos20)-  av: - -0. az az 
The zeroth-order terms of equation (20) give 

( A 3  
~. Pi;V,"O = -FfV$. 

The zeroth-order terms of equation (Al) give 

The solution of the above equation with the boundary condition V" = ro$ at z = i d / 2  is 
V$ = 0; hence from (AZ) we get Vio = 0. These results are written in equations (29) and 
(35). The zeroth-order terms of equation (18) give 

The solution of equation (A4) with the boundary conditions and Mennin-Ho relation, 
equation (14), which gives VJ0 # yk(z), is 

The form of the velocity field in equation (16) and the second equation in (21) lead us to 
write V; = constantx. The boundary conditions on V", gr and gr give V& = Vio = 0. 
The first-order terms of equations (19) and (20) give 

and 

017) 

The solution of equations (A6) and (A7) are written in equations (30) and (36). From the 
Mermin-Ho relation, aV$/ax = aV;,/az and the boundary conditions, we obtained V;, 

Asx4pi; -~P?) cos(x/d)z C O S W Y Z )  -- v", v;, = - 
pi; cos(Kyd/2) P i  
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which is written in equation (33). It is clear that an average over z of Vl1 is zero. This 
means that there is no mass flow in the x direction to the first-order contribution, 

. .  The first-order terms in equation (18) give 

The~solution of equation (A8) is similar to equations (A4) and (A5) and we obtain 
V" = Vs = 0; these are written~in equations (27) and the last equation of (21). 

Y l  Yl 
The second-order terms in equation (20) give 

P;i' Vl2 + p;vg = 0. (A91 
The second-order terms in equation (19) and equation (A9) give 

where 
K2 i w ;  
" - 2(2A + 4 B  + C + D +2E)p;i'' 

The solution of equation (A10) with the boundary condition on V" is zero; hence 
v; = v:, = 0. 

The first-order terms in equation (19) give 

The solution of equation (AI 1) is written in equation (30). 
The zero-, first- and second-order terms of equation (17) give 

a2v;, iw(& - p )  v~ 1~ As.EoKy cos[(n/d)zl sin(Kyz) 
2(A+B) x1 (A + B)cos(K,d/2) 

- + K:V:, = - 
a22 

.~ 
AeBK,ocos[(n/d)z] siu(K,z) 

(A + B) cos(K,d/2) 
AeBw a Cos(Kyz) cos(K,z) )] 
A + B a z  C0s(Kyd/2) + cos(K,d/2) 
A + B + C + E 1 aV$ 

+ 

( A W  - _ _  
.. .., . A + B  x az 

and 

The solutions of equations (A12MA14) are written in equations (23)-(25). It is clear that 
an average on z of V:l is zero. Hen?, there is no mass flow totally in the x direction to 
the first-order contribution. 

The zero- and second-order~terms of equation (18) give 
a2vn - yo + K:V;b = 0 
a zz 
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and 

- 2 v n  - - iw(pi; - p;)@Vi - iw(p; - p;)@V: - ico(p1- p;)02V;b 
a22 

a av; 
az az -2(2B + D + E)-@- ) + K;V& 

The solutions of equations (A15) and (A16) are written in equations (26) and (28). Finally 
by using the boundary condition f$2g, dz = 0, the Mermin-Ho relation and the form of 
Vr in equation (16), we get 

V$ = A H X  (A13 
V:2 = AHY (A 18) 

where 

2(p;+ p i )  + %tan (F) - ?tan K d  (?)]-I &Ai 

- 16(A+ B )  [ (K21d) 
Kzd 

1+tan2 - - 

- K : [ P ( P ~  - P[)K’ + P ~ P { K Y ( K Y  + n / d ) l  P;; - P; 
2pp;K2 (- 2(K: - (Ky  + x / d ) 2 )  

2 (T) - tan2 (+)I K d  
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